A reservoir or artificial lake is used to store water. Reservoirs may be created in river valleys by the construction of a dam or may be built by excavation in the ground or by conventional construction techniques such as brickwork or cast concrete.
The term reservoir may also be used to describe underground reservoirs such as an oil or water well.
Types of Artificial Lake or Reservoir
Valley dammed reservoir
A dam constructed in a valley relies on the natural topography to provide most of the basin of the reservoir. Dams are typically located at a narrow part of a valley downstream of a natural basin. The valley sides act as natural walls with the dam located at the narrowest practical point to provide strength and the lowest practical cost of construction. In many reservoir construction projects people have to be moved and re-housed, historical artifacts moved or rare environments relocated. Examples include the temples of Abu Simbel ( which were moved before the construction of the Aswan Dam to create Lake Nasser from the Nile in Egypt ) and the re-location of the village of Capel Celyn during the construction of Llyn Celyn.Construction of a reservoir in a valley will usually necessitate the diversion of the river during part of the build often through a temporary tunnel or by-pass channel.
In hilly regions reservoirs are often constructed by enlarging existing lakes. Sometimes in such reservoirs the new top water level exceeds the watershed height on one or more of the feeder streams such as at Llyn Clywedog in Mid Wales. In such cases additional side dams are required to contain the reservoir.
Where the topography is poorly suited to a single large reservoir, a number of smaller reservoirs may be constructed in a chain such as in the River Taff valley where the three reservoirs Llwyn-on Reservoir, Cantref Reservoir and Beacons Reservoir form a chain up the valley.
Bank-side reservoir
Where water is taken from a river of variable quality or quantity, bank-side reservoirs may be constructed to store the water pumped or siphoned from the river. Such reservoirs are usually built partly by excavation and partly by the construction of a complete encircling bund or embankment which may exceed 6 km in circumference. Both the floor of the reservoir and the bund must have an impermeable lining or core, often made of puddled clay. The water stored in such reservoirs may have a residence time of several months during which time normal biological processes are able to substantially reduce many contaminants and almost eliminate any turbidity. The use of bank-side reservoirs also allows a water abstraction to be closed down for extended period at times when the river is unacceptably polluted or when flow conditions are very low due to drought. The London water supply system is one example of the use of bank-side storage for all the water taken from the River Thames and River Lee with many large reservoirs such as Queen Mary Reservoir visible along the approach to London Heathrow Airport.
Service reservoir
Service reservoirs store fully treated potable water close to the point of distribution. Many service reservoirs are constructed as water towers, often as elevated structures on concrete pillars where the landscape is relatively flat. Other service reservoirs are entirely underground, especially in more hilly or mountainous country. In the United Kingdom, Thames Water has many underground reservoirs built in the 1800s by the Victorians, most of which are lined with brick. Honor Oak Reservoir, which was completed in 1909, is believed to one of the largest of this type in Europe. The roof is supported on large brick pillars and arches and the outside surface is grassed over.
Service reservoirs perform several functions including ensuring sufficient head of water in the water distribution system and providing hydraulic capacitance in the system to even out peak demand from consumers enabling the treatment plant to run at optimum efficiency. Large service reservoirs can also be managed to so that energy costs in pumping are reduced by concentrating refilling activity at times of day when power costs are low.